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a b s t r a c t

The current study presents an application of near infrared spectroscopy for identification and

quantification of the fraudulent addition of barley in roasted and ground coffee samples. Nine different

types of coffee including pure Arabica, Robusta and mixtures of them at different roasting degrees were

blended with four types of barley. The blending degrees were between 2 and 20 wt% of barley.

D-optimal design was applied to select 100 and 30 experiments to be used as calibration and test set,

respectively. Partial least squares regression (PLS) was employed to build the models aimed at

predicting the amounts of barley in coffee samples. In order to obtain simplified models, taking into

account only informative regions of the spectral profiles, a genetic algorithm (GA) was applied. A

completely independent external set was also used to test the model performances. The models showed

excellent predictive ability with root mean square errors (RMSE) for the test and external set equal to

1.4% w/w and 0.8% w/w, respectively.

& 2012 Elsevier B.V. All rights reserved.
1. Introduction

Coffee is one of the three most widely traded foodstuffs and
the second largest commodity industry worldwide [1]. There are
two varieties of coffee with economic importance: Arabica and
Robusta [2]. Coffee Arabica is generally more appreciated for its
organoleptic features and, thus, it is the most expensive [3].
Assurance of quality of roasted coffees has attracted widespread
attention for controlling and preventing coffee adulteration, also
given the great difference in the final sale price [4]. The principal
adulterants of coffee include roasted and unroasted coffee husks,
twigs, barley, chicory, malt, starch, corn, maltodextrins, glucose
sirups, and caramelized sugar [5]. As the simple visual inspection
is not an appropriate method for differentiating between the
genuine coffee samples and the fraudulent ones, a number of
analytical strategies have been developed. El-Abassy et al. [6]
applied micro Raman spectroscopy combined with chemometric
methods to discriminate between green Arabica and Robusta

coffees based on chlorogenic acid and lipid contents. Hecimovic
et al. [7] employed UV–vis spectroscopy and HPLC analysis to
determine the polyphenolic compounds and caffeine content of
four different types of coffees. Gonzalez et al. [8] used the
ll rights reserved.
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tocopherol and triglyceride content of roasted and green coffees
as features for discriminating between Arabica and Robusta

varieties; principal component analysis (PCA) and linear discri-
minant analysis (LDA) were employed as pattern recognition
tools. Martin et al. [2] applied a relatively similar approach, based
on fatty acid profiles as discriminant parameters for coffee variety
differentiation. Digital image processing was carried out by Sano
et al. [9] to quantify the amounts of brown sugar, coffee husk,
maize, and soybean added to coffee Arabica. Near infrared
spectroscopy combined with multivariate calibration methods
was used by Pizarro et al. to quantify the content of Robusta

variety in roasted coffee mixtures [4]. Jham et al. [10] investigated
the potential of tocopherols determined by HPLC analysis as
markers to detect coffee adulteration by corn. The feasibility of
detection of coffee adulteration with roasted barley, based on
volatile compound profiles was studied by Oliveira et al. [11];
solid phase microextraction (SPME) coupled with GC–MS analysis
was carried out as analytical tool and chemometric methods were
used for data processing. Nogueira and Lago [12] proposed a
method based on acid hydrolysis of xylan and starch and
consequent electrophoretic separation for identification of adul-
teration in processed coffee with cereals and coffee husks.

Despite of the relative success achieved by many of these
approaches for determining coffee authenticity [13–18], it is
important to consider that they are, in many cases, expensive,
complex and/or time consuming. For this reason, a fast, reliable
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and low-cost technique with easy implementation for routine
analysis represents a very attractive alternative for adulteration
and varietal identification purposes [19–23].

Over the last decades, the application of near infrared spectro-
scopy (NIRS) as a fast and non-destructive technique for the authen-
tication of food samples has become widespread thanks to the
advances in chemometrics. Furthermore, it allows to directly analyze
solid samples without any complex physical/chemical pre-treatment.
Thus, several studies concerning NIR applications in food quality and
authentication assessment have been reported [24–28].

In many studies on coffee adulterations, usually, one or two
types of coffee and adulterants have been involved. So, the models
obtained are poorly representative and are just applicable for
these specific samples. In order to obtain a more representative
and, thus, widely applicable model, it is advisable to collect and
use a wider variety of coffee and adulterants. Taking into account
that the exploration of all the possible combinations of different
varieties, blends and roasting degrees would be impractical, it is
worth finding the minimum number of samples that is maximally
representative of all the variability factors that characterize all the
possible combinations. The optimal design techniques select
highly representative subsets according to particular criteria.
The usual approach is to specify a model, to determine the region
of interest, to select the number of runs to be made, to specify the
optimality criterion and, finally, to find the subset of designed
points from the whole set of candidate points [29]. D-optimality is
the criterion most widely applied for such a purpose [30,31].

The objective of the present study was to determine the amount
of barley added in coffee samples based on NIR spectral information.
In order to obtain a widely applicable model, nine types of commer-
cial coffee samples – chosen as to extensively explore the variability
of coffee present on the Italian market – and four types of barley
samples, with different roasting degrees, were used for investigation.
The concentrations of barley were changed from 2 to 20% (w/w) at 10
levels. The lowest limit is surely lower than the sensorial limit of
detection. Also the resolution step (2%) is lower than human sensorial
capability for distinguishing between close quantities. By taking into
account all the combinations, 360 mixtures (9 coffees�4 barleys�10
concentrations) should have been prepared. A D-optimal design was
therefore applied to reduce the number of experiments maintaining
the representativeness. The prediction ability of PLS models, either on
the full spectra or after variable selection by means of genetic
algorithms (GA) [32–35], was evaluated on a test sample set. All
the models obtained were additionally tested for their prediction
ability with ten independent mixtures, prepared with one coffee and
one barley which were not used for preparing the training mixtures.
2. Materials and methods

2.1. Coffee and barley samples

Nine coffee bean varieties and four barley samples were obtained
from specialized markets. The coffee samples were selected as to
represent the most common types of coffees available on the Italian
market, including both Arabica and Robusta as well as their mixtures
at different roasting degrees.

The coffee pure specimens were labeled with upper-case
characters from A to I, while the barley pure samples were
marked by lower-case characters from a to d.

2.2. Apparatus and procedure

Spectral profiles of powder samples were recorded in the
reflection mode in the range 4,000–10,000 cm�1 with a resolution
of 4 cm�1, by an FT-near infrared spectrophotometer based on a
polarization interferometer (Buchi NIRFlex N-500). Before analy-
sis, coffee and barley toasted beans were ground with an electric
grinder for about 60 s and, afterward, passed through a 0.3 mm
sieve. Mixtures at different concentrations were prepared by
separately weighing and accurately mixing the finely ground
pure powders. Spectra of two grams of samples were recorded
at a temperature of 2071 1C, in a cylindrical optical-glass cell
(Hellma, Müllheim, Germany). Each spectrum recorded was the
average of 32 successive scans. In addition, three acquisitions
were performed, for each experiment, by manual rotation of the
cell. In order to minimize the effect of uncontrollable factors, all
the experiments were carried out in a random order.
2.3. Experimental design for calibration and validation

The selection of a subset representative of all the possible
combinations of coffee and barley samples at ten different concentra-
tions (from 2% to 20% w/w) represented a crucial step prior to
carrying out a suitable and significant study, since the total number
of combinations was considerably large (360 experiments). A total
number of 100 experiments with the maximum representativeness
was chosen, based on D-optimal design, to be used in the study as the
calibration set. The spectra of all the pure coffee samples as well were
recorded and included in the calibration set, which was therefore
formed by a total of 109 samples. Four mixtures were prepared and
analyzed three times, in order to assess experimental variability, thus
the calibration data matrix was formed by 117 spectra. Thirty
experiments were also selected as the test set, among the remaining
candidate experiments, by applying a subsequent D-optimal design.
The experimental matrix is reported in Table 1. An additional
evaluation, with a completely external set, was also performed
using a new type of coffee and a new type of barley, at ten different
concentrations. The new pure coffee was also included in the
external set, which was thus composed by 11 spectra.
2.4. Multivariate calibration and variable selection

PLS regression analysis was performed in order to obtain a
quantitative model for the prediction of barley amount based on
spectral information. PLS is a latent variable-based method,
particularly useful when dealing with noisy and collinear data
[36]. The latent variables (LVs) are orthogonal directions in the
space of the predictors characterized by the maximum covariance
with the selected response variable. The optimal complexity – i.e.,
the number of LVs to be used for building the models – was
estimated by a cross-validation procedure, with five deletion
groups. In more detail, the number of LVs that provided the
minimum error – evaluated as root mean square error in cross-
validation, RMSECV – was selected as the optimal complexity.

Column autoscaling was applied on the spectral data.
In the case for spectral data the main goal of variable selection

is the elimination of noise, together with the possibility of
obtaining models with a reduced complexity.

The selection of variables for multivariate calibration can be
considered as an optimization problem. GAs applied to PLS have
been shown to be very efficient optimization procedures. They
have been applied to many spectral data sets and are shown to
provide better results than full-spectrum approaches [37] The
major concern with using GAs is the problem of over-fitting. This
problem has been addressed using a randomization test [38]. For
full details of the algorithm applied, the reader is referred to [39].

Data processing has been performed by programs developed
by the authors under MATLAB environment (The MathWorks, Inc.,
Natick, MA).



Table 1
Design matrix of calibration and test sets. Upper-case characters from A to I indicate coffee samples while lower-case characters from a to d indicate barley samples.

No. Coffee Barley Conca No. Coffee Barley Conc. No. Coffee Barley Conc.

1 E d 4.09 50 G c 2.01 99 F c 15.98

2 G c 13.95 51 H a 10.00 100 D b 6.02

3 B c 8.02 52 H c 16.00 101 E c 8.00

4 H a 11.89 53 A a 6.02 102 B a 12.01

5 A b 14.02 54nn I c 6.02 103 F d 6.04

6n D a 3.99 55 I b 10.00 104 G a 3.98

7 E b 5.98 56 I c 2.00 105 A – 0.00

8 C a 2.06 57 F a 20.04 106 F b 9.99

9 B – 0.00 58 G d 16.01 107 A d 20.00

10 G c 10.13 59nnn F c 13.99 108 G d 20.00

11 E b 17.94 60 B d 10.00 109 H a 17.98

12 I d 17.94 61 A c 4.00 110 A d 18.01

13 E c 14.01 62 F – 0.00 111 I – 0.00

14 F d 2.00 63 G b 11.99 112 B c 4.00

15 H d 6.02 64 G – 0.00 113 D c 17.99

16nn I c 6.04 65 D c 12.03 114 E a 20.00

17 B b 8.03 66 H b 4.05 115nnnn A b 9.99

18 B c 5.98 67 D c 20.02 116 B d 13.99

19 A c 17.99 68 C – 0.00 117nnnn A b 10.03

20 H d 2.01 69 I a 8.01 1t B D 3.99

21 I b 2.03 70 B b 16.00 2t F B 2.02

22 G b 18.03 71 I b 14.04 3t G C 17.98

23 C a 8.00 72nn I c 6.03 4t A d 12.03

24 G b 8.22 73 E – 0.00 5t C c 2.03

25 C c 12.03 74 D a 6.00 6t C d 14.00

26 A c 19.98 75 G a 14.03 7t C d 20.00

27 D d 8.00 76 C b 19.99 8t E d 12.00

28 C b 16.01 77nnn F b 14.03 9t F a 8.00

29 A a 16.01 78 H c 16.01 10t H d 18.00

30 I a 19.98 79 B b 9.99 11t E c 20.00

31 I d 16.02 80 I a 1.99 12t F c 3.99

32 B d 19.97 81 F b 4.00 13t I c 10.00

33n D a 3.98 82 E d 7.98 14t A b 6.04

34nnn E b 3.98 83nnn A b 9.99 15t I a 15.99

35 F c 14.01 84 E a 1.99 16t B a 9.98

36 H d 8.00 85 D a 12.02 17t E d 13.98

37 H b 20.01 86 F a 2.00 18t H a 8.00

38 H – 0.00 87n D a 4.03 19t H b 12.00

39 C a 14.01 88 C b 17.99 20t D b 20.00

40 E c 16.02 89 D – 0.00 21t B a 14.05

41 F c 11.99 90 C c 6.00 22t E b 16.03

42 A d 7.99 91 A b 11.99 23t G d 2.02

43 F d 4.00 92 I d 12.04 24t G b 3.99

44 H b 14.01 93 D d 16.05 25t D a 9.99

45 A a 9.99 94 G d 6.02 26t A c 16.00

46 C d 12.01 95 B a 18.05 27t D c 8.02

47 E a 2.00 96 C c 4.02 28t I b 18.01

48 C d 10.02 97 D d 14.05 29t H c 5.99

49 F a 18.02 98 D b 9.99 30t G a 5.98

n, nn, nnn , nnnn Indicates groups of replicates.
a Weight percentages of barley in coffee (w/w%) (real values of concentration were used for modeling).
t Refers to test set.
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3. Results and discussion

3.1. Evaluation of different sources of variability

In an ideal system, the main variability is related to the variation
of the factor of interest—that is, in the present study, the concentra-
tion of barley. However, various external factors – e.g., related to
sampling – can affect the global variance of the system.

As a first step, it has been verified that the variability related to
sample preparation (mainly grinding of the raw materials, weigh-
ing of the coffee and barley powders, mixing) is smaller than the
measurement variability (results not reported).

3.2. Multivariate calibration and variable selection

Table 2 shows the root mean square error, the bias and the R2

values obtained for the PLS models. For the full-spectrum approach,
the optimal complexity (estimated by cross-validation) was 12
latent variables.

PLS has a high capability to extract relevant information and to
produce a reliable prediction. However, in the last two decades, it
has been recognized that an efficient feature selection can be
highly beneficial, both to improve the predictive ability of the
model and/or to reduce its complexity [37]. For the sake of
selecting the proper regions of the spectra, a genetic algorithm
(GA) was chosen as the feature selection technique. For the
purpose of reducing the search domain, the 1501 original spectral
variables were reduced to 188 by sequentially averaging the
values of eight contiguous data-points. The GA–PLS algorithm
was applied five times on the calibration set. The number of
evaluations of each run was set to 200. According to the GA
results, 16 variables were selected. The wavenumber intervals
corresponding to the variables selected are shown in Fig. 1.
Four spectral regions have been selected: the first one is between



Table 2
Statistical performance of PLS and GA–PLS models on the calibration (cross-

validation with five deletion groups), test and external sets.

Calibration set (CV) Test set External set

RMSE Bias RMSE Bias RMSE Bias

PLS 1.23 0.04 1.46 0.53 0.85 �0.58

PLS–GA 1.18 �0.01 1.42 0.21 1.10 �0.95
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Fig. 1. Spectral regions selected by applying GA.

Fig. 2. Experimental vs. predicted values of concentration (% w/w) of barley in

coffee samples for (a) PLS model on the whole spectral range and (b) PLS model on

spectral bands selected by GA.
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6032 and 5748 cm�1, the second one includes the 4880–
4788 cm�1range, the third one in the 4688–4628 cm�1 range,
and the fourth includes the narrow range between 4336 and
4276 cm�1. These regions contain 128 wavenumbers in total.
Although for the nature of NIRS it is not possible to univocally
assign the vibrational transition related to the selected spectral
bands, the majority of them are ascribable to the first overtone of
N–H, CQO, O–H, C–H, and S–H functional groups of ArOH, H2O,
ROH, CONHR, and RNH2. The results of PLS applied on the
variables selected by GA are presented in Table 2. Eight latent
variables were selected for modeling. As it can be seen, the
predictive ability of the model is of the same order of that of
PLS applied on the whole spectral range. However, the complexity
of this model is considerably reduced in comparison to the full-
spectrum one. It is worth noticing that PLS outcomes for the three
sets (calibration, test and external set) are consistent. This
indicates that the models are correctly accounting for valuable
spectral information—rather than for chance correlations, which
are a frequent cause of overfitting. The parity plots of the two
models are shown in Fig. 2. As it can be noticed by plot
examination, the models obtained are capable to predict barley
concentration with a very satisfactory accuracy, not only in
calibration but also on external samples. Residuals are randomly
distributed about their mean value, which is satisfactorily close to
0 (low bias), as shown in Fig. 3.
4. Conclusions

The excellent prediction ability obtained by multivariate
calibration and indicated by the low values of root mean square
errors (RMSE) confirmed that non-destructive NIR measurements
can be successfully employed for the detection and quantification
of fraudulent addition of roasted barley to roasted coffee. Variable
selection by using genetic algorithms helped to determine the
spectral regions most useful to identify the adulteration of coffee
with barley. The methodology allowed to quantify the amount of
adulterant up to a level of 2% w/w of barley.

This paper clearly shows that the representativity of the
training set is a key point in the success of a calibration model.
The achievement of very low prediction errors on a totally
external test set (i.e., on mixtures composed by qualities of coffee
and barley unknown to the model) has been possible only as a
consequence of the fact that the training set was made by taking
into account a relatively large number of varieties of coffee and
barley. Another key point is the application of D-optimal design
for the selection of a subset of adequate size from the very high
set of candidate experiments.

The results reported in the present study indicate NIRS to be a
promising procedure to be considered in future applications to
quantify different adulterants in coffee powder. Indeed, sample
collection and analysis should be performed through a number of
years, in order to account for variability factors closely related to



Fig. 3. Residuals vs. sample number of (a) PLS model on the whole spectral range and (b) PLS model on spectral bands selected by GA. Residuals are shown for the 117

calibration spectra, for the 30 test spectra and for the 11 external spectra, respectively. The solid lines represent null residuals while the dashed lines indicate the model

bias value.
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the harvest and to obtain models characterized by a global

applicability.
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